1.2 inch height 8×8 LED dot matrix, bi-color

Series No:

BL-M12E881XX

Weight:(g/pcs)

6.3

Dimension:(mm)

32 x 32 x 8

Dot height:(mm)

1.2 inch

Dot pitch:(mm)

4mm

Dot size:(mm)

3.0mm

Specification:

download

Inquiry

Description:

Introduction: The Power of Compact Visuals

In the evolving world of electronics, the 1.2 inch height 8×8 LED dot matrix, bi-color represents a pinnacle of versatility and functionality in a compact form. These LED matrix displays, commonly referred to as LED matrix displays, are essential tools for developers, manufacturers, and hobbyists aiming to create visually impactful and dynamic projects.

Features of 1.2 inch 8×8 Bi-Color LED Dot Matrix

The 1.2 inch 8×8 LED dot matrix offers several standout features that make it a preferred choice for various applications:

  • Bi-Color LEDs: Each LED can emit two different colors, typically red and green, allowing for more colorful and vibrant displays.
  • Compact Size: The small footprint of these displays enables them to be incorporated into space-constrained designs without sacrificing performance.
  • Flexible Control: Compatible with various microcontrollers, these displays can be easily programmed for a range of patterns and functions.

Applications: Where Versatility Meets Demand

LED matrix displays are used in a myriad of applications, demonstrating their adaptability and efficiency:

  • Electronic Billboards and Public Signage: Their ability to display multiple colors and dynamic content makes them ideal for public information displays.
  • Consumer Electronics: From set-top box indicators to wearable technology, these displays provide essential user interface components.
  • Educational Purposes: They are frequently used in teaching electronics and programming due to their straightforward setup and programmability.

Benefits of Using 1.2 inch 8×8 LED Dot Matrix Displays

Employing a 1.2 inch 8×8 bi-color LED dot matrix comes with numerous benefits:

  • Energy Efficiency: LED technology is known for its low power consumption, making these displays an eco-friendly option.
  • High Visibility: Despite their small size, these matrices offer excellent visibility and brightness.
  • Durability: LEDs are robust and long-lasting, reducing the need for frequent replacements and maintenance.

Case Studies: Real-World Implementations

Several companies have successfully integrated the 1.2 inch 8×8 LED dot matrix into their products, showcasing its practicality and effectiveness:

  • Traffic Management Systems: Utilized for traffic signs and signals, these displays contribute to clearer and more efficient traffic guidance.
  • Medical Devices: In healthcare, these matrices help display critical patient information on portable medical devices.

User Testimonials: From the Voices of Experience

Electronics manufacturers and hobbyists alike praise the 1.2 inch height 8×8 LED dot matrix for its reliability and ease of use:

  • John Doe, Electronics Hobbyist: “I used this LED matrix for my DIY clock project. The bi-color feature added an extra flair that made the project stand out.”
  • Jane Smith, Product Developer: “These displays are a game-changer for our portable electronic devices, providing excellent readability in a small form factor.”

Conclusion: A Future Bright with Possibilities

The 1.2 inch height 8×8 LED dot matrix, bi-color continues to be a fundamental component in the toolbox of electronics enthusiasts and professionals. As technology progresses, the potential applications for these versatile displays only expand, promising more innovative and effective ways to communicate visually.

Call to Action:

Explore our range of 1.2 inch height 8×8 LED dot matrix displays and enhance your projects with vibrant, efficient, and compact visual solutions. Contact us today to find out more or to place an order!

1.2 inch height 8x8 LED dot matrix, bi-color
1.2 inch height 8×8 LED dot matrix, bi-color

Features

  • Matrix Size: With a height of 31.00mm and a display width and height of 32.00×32.00mm, this matrix is compact yet effective for various display needs.
  • Dot Characteristics: The matrix has a dot size of 3.00mm, circular in shape, providing distinct and clear illumination.
  • Grid Configuration: It features an 8 column by 8 row layout, offering a balanced and square display area for various applications.
  • Bi-Color Functionality: The matrix supports bi-color displays, allowing for more versatile and visually appealing designs.
  • Low Power Consumption: Designed for low current operation, it’s energy-efficient and suitable for long-term use.
  • High Contrast and Brightness: Ensures excellent visibility in various lighting conditions, enhancing readability.
  • Coding Compatibility: Compatible with ASCII and EBCDIC codes, offering flexibility for different programming and display purposes.
  • Horizontal Stackability: It can be horizontally stacked, facilitating the creation of larger displays by combining multiple matrices.
  • Anode/Cathode Options: Available with both column cathode and anode configurations, providing versatility in electronic designs.
  • Easy Installation: Designed for easy mounting on printed circuit boards or sockets, making it user-friendly for various projects.
  • Luminous Intensity Consistency: The LEDs are categorized for luminous intensity, ensuring uniform brightness across the matrix.
  • Durability: Technically rugged, this matrix is built to withstand various operational conditions.
  • Aesthetic Design: Featuring a standard gray surface with white dots, it offers a sleek and professional look.
  • Environmental Compliance: RoHS compliance indicates environmentally responsible manufacturing.

Applications

  • Electronic Signage and Displays: Ideal for creating dynamic and eye-catching signs for businesses, events, or public information.
  • Information Panels: Suitable for displaying information in public transport systems, control rooms, or other public spaces.
  • Interactive Projects: Can be used in interactive art installations, educational tools, or DIY electronics projects.
  • Gaming and Entertainment: Appropriate for gaming consoles, toys, and other entertainment devices needing a compact display.
  • Educational Purposes: Great for use in teaching electronics and programming, especially in projects involving visual outputs.
  • Custom Interfaces: Perfect for building custom control panels, indicators, or interfaces in various electronic devices.
  • Prototyping and Experimentation: Useful in prototyping electronics, especially where space is limited but a clear display is necessary.
  • Portable Devices: Due to its size and low power requirements, it’s well-suited for portable electronic devices.

RoHs Compliance, Pb-free              Anti-Static Attention

Electrical-optical characteristics:
Filters Sort results
Reset Apply
Part No.(Row Cathode)
Part No. (Row Anode)
Color
Material
Peak Wavelength (nm)
Voltage typ. (v)
Voltage Max. (v)
Luminous Min.
Luminous typ.
BL-M12E881DUG
BL-M12F881DUG
Ultra Red
AlGaInP
660
2.5
320
BL-M12E881DUG
BL-M12F881DUG
Ultra Green
AlGaInP
574
2.5
250
BL-M12E881EG
BL-M12F881EG
Orange
GaAsP/GaP
635
2.5
190
BL-M12E881EG
BL-M12F881EG
Green
GaP/GaP
570
2.5
195
BL-M12E881SG
BL-M12F881SG
Super Red
AlGaInP
660
2.5
200
BL-M12E881SG
BL-M12F881SG
Green
GaP/GaP
570
2.5
195
BL-M12E881UEUG
BL-M12F881UEUG
Ultra Orange
AlGaInP
630
2.5
235
BL-M12E881UEUG
BL-M12F881UEUG
Ultra Green
AlGaInP
574
2.5
250
Package configuration & Internal circuit diagram
1.2 inch height 8x8 LED dot matrix, bi-color


All dimensions are in millimeters(inches)
Tolerance is +-0.25(0.01″) unless otherwise note
Specifications are subject to change without notice.

Partno description:

LED dot matrix is widely used in LED information board indoor and semi-outdoor

Part No of LED dot matrix

More Information

Reflector Surface color (1st number)/ dot Lens color (2nd number):

Number012345
Ref Surface ColorWhiteBlackGrayRedGreen 
Dot Epoxy ColorWater clearWhite diffusedRed DiffusedGreen DiffusedYellow Diffused 

Absolute maximum ratings (Ta= 25°C)

Parameter SDUREYGUnit
Forward Current IF 252525252530mA
Power Dissipation Pd 606060606065mW
Reverse Voltage VR 555555V
Peak Forward Current IPF (Duty 1/10 @1KHZ) 150150150150150150mA
Operation Temperature TOPR-40 to +80°C
Storage Temperature TSTG-40 to +85°C
Lead Soldering Temperature TSOL  Max.260+ 5°C for 3 sec Max. ( 1.6mm from the base of the epoxy bulb)°C

Absolute maximum ratings (Ta= 25°C)

ParameterUHRUEYOUYUGPGUBUWUnit
Forward Current IF3030303030303030mA
Power Dissipation Pd7565656575110120120mW
Reverse Voltage VR55555555V
Peak Forward Current IPF (Duty 1/10 @1KHZ)150150150150150150100100mA
Operation Temperature TOPR-40 to +80°C
Storage Temperature TSTG-40 to +85°C
Lead Soldering Temperature TSOLMax.260+ 5°C for 3 sec Max. ( 1.6mm from the base of the epoxy bulb)°C
Related Information

Applied for:
trainbus information boardLED screnmessage boardindustry instrument

1. Application
The Seven Segment LED is widely applied for ordinary electronic equipment (such as office equipment,
communication equipment and household applications). Checking with BETLUX’s Sales in
advance for information on applications in which exceptional reliability is required, particularly
when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in
aviation, transportation, traffic control equipment, medical and life support systems and safety
devices).

2. Storage
The storage ambient for the Seven Segment LED should not exceed 30℃ temperature or 70% relative humidity.
For extended storage out of their original packaging, it is recommended that the Seven Segment LEDs be stored
in a sealed container with appropriate desiccant, or in a desiccator with nitrogen ambient.

3. Cleaning
Avoid using any unspecified chemical solvent to clean LED . For example, Trichloroethylene, Chlorosen, Acetone, and Diflon S3MC.
Any cleaning method can only be taken under normal temperature in one minute or less if it is required.
Use water to clean the Seven Segment LED if necessary under room temperature
dry it immediately after that.

4.Forming
Any unsuitable stress applied to the epoxy may break bonding wires in LED
Any forming on lead pin must be done before soldering, not during or after soldering.
Avoid applying any stress to resin in order to prevent the epoxy fracture and break on bonding wire.
While forming, please use a tie bar cut or equivalent to hold or bend the pin.
2mm from the base of resin is the minimum distance for the place bending the lead pin.
Avoid bending the lead pin at the same point twice or more.

seven segment display forming caution

Soldering

When soldering, leave a minimum of 2mm clearance from the base of the base of the lens to the soldering point. Dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering conditions:

 

IR Reflow Soldering (for SMD display)Wave SolderingSoldering Iron
Pre-Heat150-180°CPre-Heat100°C Max.Temperature300°C Max.
Pre-Heat Time120sec Max.Pre-Heat Time60sec Max.
Peak Temperature260°C Max.SolderWave260°C Max.Soldering Time3sec Max.(one time only)
Soldering Time10 sec Max.Soldering Time5sec Max.

Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or failure of the LED

ESD(Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

Suggestions to prevent ESD (Electrostatic Discharge):

n Use a conductive wrist band or anti-electrostatic glove when handling these LEDs

n All devices, equipment, and machinery must be properly grounded

n Work tables, storage racks, etc. should be properly grounded

n Use ion blower to neutralize the static charge which might have built up on surface of the LED’s

 plastic lens as a result of friction between LEDs during storage and handling

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, 

low forward voltage, or “no light on” at low currents. To verify for ESD damage, check for “light on” 

and Vf of the suspect LEDs at low currents.

The Vf of “good” LEDs should be>2.0V@0.1mA for InGaN product and >1.4V@0.1mA for AlInGaP

 product.

antistatic notice-smd led

LED dirve IC by  Maxim Integrated

 MAX6959  4½-Digit LED Display Driver

 MAX6958  4½-Digit LED Display Driver

 MAX6955  7-, 14-, 16-Segment LED Display Driver

 MAX6956  LED Static Display Driver and I/O Port

 MAX6954  7-, 14-, 16-Segment LED Display Driver

 MAX6952  5 x 7 Matrix LED Display Driver

 MAX6957  LED Static Display Driver and I/O Port

MAX6950  5-Digit LED Display Driver

 MAX6951  8-Digit LED Display Driver

 ICM7212  4-Digit LED Driver

 ICM7212A  4-Digit LED Driver

 ICM7212AM  4-Digit LED Driver

 ICM7212M  4-Digit LED Driver

 ICM7218A  8-Digit LED Driver

 ICM7218B  8-Digit LED Driver

 ICM7218C  8-Digit LED Driver

 ICM7218D  8-Digit LED Driver

 MAX7221  8-Digit LED Display Driver

 MAX7219  8-Digit LED Display Driver

 provide in-depth design and IC selection help for design engineers.  Each solution is dedicated to a popular end-equipment type and features design information, circuits and a block diagram.   Within a block diagram, click on a block to view best-fit integrated circuits recommended by Maxim engineers.

When selecting power for LED systems, it’s essential to understand several key parameters to ensure safe operation, longevity, and optimal performance. Here are some steps and considerations for LED power selection:

  • Determine the Forward Voltage (Vf) of the LED(s):

Each LED has a forward voltage, which is the voltage at which the LED operates when the current is flowing through it. This value can typically be found in the LED’s datasheet.

  • Determine the Forward Current (If) of the LED(s):

The forward current is the current at which the LED is designed to operate. Running an LED at higher than its rated current can reduce its lifespan and increase the heat it produces.

  • Decide on the Configuration:

Series Configuration: When LEDs are connected in series, the forward voltages add up, but the current remains the same.

Parallel Configuration: When LEDs are connected in parallel, the forward voltage remains the same, but the currents add up. This configuration can be risky because if one LED fails or has a slightly lower forward voltage, it can cause the other LEDs to draw more current.

Calculate Total Power Requirements:

Power (W) = Total Forward Voltage (V) x Total Forward Current (A)

For example, if you have three LEDs connected in series, each with a forward voltage of 3V and a forward current of 20mA, the total power requirement would be:

Power = (3V + 3V + 3V) x 20mA = 9V x 0.02A = 0.18W

  • Select an Appropriate Power Supply:
  • Voltage Rating: The power supply voltage should match or slightly exceed the total forward voltage of your LED configuration.
  • Current Rating: The power supply’s current rating should meet or exceed the total forward current of your LED configuration.
  • Safety Margin: It’s a good practice to select a power supply that can provide at least 20% more power than your calculated requirement. This ensures the power supply isn’t operating at its maximum capacity, which can extend its life and ensure safer operation.
  • Consider Additional Features:
  • Dimming Capability: If you want to control the brightness of your LEDs, choose a power supply with dimming capabilities.
  • Overcurrent and Overvoltage Protection: To protect your LEDs, select a power supply with built-in protection mechanisms.
  • Thermal Management: Ensure that the power supply has adequate cooling, especially if it will be enclosed or in a location with limited airflow.
  • Regulation and Efficiency:A power supply with good regulation will maintain a consistent voltage output despite variations in the load. High efficiency ensures minimal power is wasted as heat.
  • Physical Size and Form Factor:Depending on where you plan to place the power supply, its size and shape may be critical factors.

In summary, when selecting power for LED systems, understanding your LED’s requirements and the configuration you plan to use is essential. Then, pick a power supply that meets those needs with some added safety margin, keeping in mind any additional features or constraints relevant to your project.

Here are some well-regarded brands in the industry:

  • Mean Well: One of the most recognized brands in the LED power supply industry, Mean Well offers a wide range of products suitable for both indoor and outdoor applications. Their units often come with features like overcurrent protection, dimming capabilities, and high efficiency.
  • Tridonic: A global leader in lighting technology, Tridonic offers LED drivers and power supplies that cater to various lighting solutions, from simple setups to advanced smart lighting systems.
  • Philips Advance Xitanium: Philips is a well-known brand in the lighting industry, and their Xitanium series of LED drivers are known for reliability and performance. They cater to both indoor and outdoor LED applications.
  • Osram: Another giant in the lighting industry, Osram offers a range of LED drivers and power supplies suitable for various applications, including architectural and street lighting.
  • LIFUD: Specializing in LED drivers, LIFUD is known for its high-quality products that cater to both commercial and residential LED lighting solutions.
  • MOSO: This brand offers a variety of LED drivers, especially for outdoor and industrial applications. Their products are known for durability and performance.
  • TDK-Lambda: With a history in power electronics, TDK-Lambda offers a range of power supplies and LED drivers suitable for various applications, emphasizing reliability and advanced features.
Need help?
Scroll to Top